128 resultados para BRUCEI

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trypanosoma brucei membranes consist of all major eukaryotic glycerophospholipid and sphingolipid classes. These are de novo synthesized from precursors obtained either from the host or from catabolised endocytosed lipids. In recent years, substantial progress has been made in the molecular and biochemical characterisation of several of these lipid biosynthetic pathways, using gene knockout or RNA interference strategies or by enzymatic characterization of individual reactions. Together with the completed genome, these studies have highlighted several possible differences between mammalian and trypanosome lipid biosynthesis that could be exploited for the development of drugs against the diseases caused by these parasites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has long been known that trypanosomes regulate mitochondrial biogenesis during the life cycle of the parasite; however, the mitochondrial protein inventory (MitoCarta) and its regulation remain unknown. We present a novel computational method for genome-wide prediction of mitochondrial proteins using a support vector machine-based classifier with approximately 90% prediction accuracy. Using this method, we predicted the mitochondrial localization of 468 proteins with high confidence and have experimentally verified the localization of a subset of these proteins. We then applied a recently developed parallel sequencing technology to determine the expression profiles and the splicing patterns of a total of 1065 predicted MitoCarta transcripts during the development of the parasite, and showed that 435 of the transcripts significantly changed their expressions while 630 remain unchanged in any of the three life stages analyzed. Furthermore, we identified 298 alternatively splicing events, a small subset of which could lead to dual localization of the corresponding proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trypanosoma brucei and related pathogens transcribe most genes as polycistronic arrays that are subsequently processed into monocistronic mRNAs. Expression is frequently regulated post-transcriptionally by cis-acting elements in the untranslated regions (UTRs). GPEET and EP procyclins are the major surface proteins of procyclic (insect midgut) forms of T. brucei. Three regulatory elements common to the 3' UTRs of both mRNAs regulate mRNA turnover and translation. The glycerol-responsive element (GRE) is unique to the GPEET 3' UTR and regulates its expression independently from EP. A synthetic RNA encompassing the GRE showed robust sequence-specific interactions with cytoplasmic proteins in electromobility shift assays. This, combined with column chromatography, led to the identification of 3 Alba-domain proteins. RNAi against Alba3 caused a growth phenotype and reduced the levels of Alba1 and Alba2 proteins, indicative of interactions between family members. Tandem-affinity purification and co-immunoprecipitation verified these interactions and also identified Alba4 in sub-stoichiometric amounts. Alba proteins are cytoplasmic and are recruited to starvation granules together with poly(A) RNA. Concomitant depletion of all four Alba proteins by RNAi specifically reduced translation of a reporter transcript flanked by the GPEET 3' UTR. Pulldown of tagged Alba proteins confirmed interactions with poly(A) binding proteins, ribosomal protein P0 and, in the case of Alba3, the cap-binding protein eIF4E4. In addition, Alba2 and Alba3 partially cosediment with polyribosomes in sucrose gradients. Alba-domain proteins seem to have exhibited great functional plasticity in the course of evolution. First identified as DNA-binding proteins in Archaea, then in association with nuclear RNase MRP/P in yeast and mammalian cells, they were recently described as components of a translationally silent complex containing stage-regulated mRNAs in Plasmodium. Our results are also consistent with stage-specific regulation of translation in trypanosomes, but most likely in the context of initiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the protozoan parasite, Trypanosoma brucei, can acquire lipids from its environment, recent reports have shown that it is also capable of de novo synthesis of all major phospholipids. Here we provide an overview of the biosynthetic pathways involved in phospholipid formation in T. brucei and highlight differences to corresponding pathways in other eukaryotes, with the aim of promoting trypanosomes as an attractive model organism to study lipid biosynthesis. We show that de novo synthesis of phosphatidylethanolamine involving CDP-activated intermediates is essential in T. brucei and that a reduction in its cellular content affects mitochondrial morphology and ultrastructure. In addition, we highlight that reduced levels of phosphatidylcholine inhibit nuclear division, suggesting a role for phosphatidylcholine formation in the control of cell division. Furthermore, we discuss possible routes leading to phosphatidylserine and cardiolipin formation in T. brucei and review the biosynthesis of phosphatidylinositol, which seems to take place in two separate compartments. Finally, we emphasize that T. brucei represents the only eukaryote so far that synthesizes all three sphingophospholipid classes, sphingomyelin, inositolphosphorylceramide and ethanolaminephosphorylceramide, and that their production is developmentally regulated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MAP kinase kinase 1 (MKK1) is encoded by a single copy gene in Trypanosoma brucei. It has been shown recently that MKK1 is not essential for bloodstream forms [14]. To investigate the requirement for MKK1 in other life-cycle stages we generated null mutants in procyclic forms of a fly-transmissible strain. These grew normally in culture and were able to establish midgut infections in tsetse at normal rates and intensities, but were incapable of colonising the salivary glands. Transformation of null mutants with an ectopic copy of MKK1 enabled parasites to complete the life cycle in tsetse and infect mice. This is the first example of a gene that is indispensable for transmission of T. brucei. It also raises the possibility that activating the MKK1 signalling cascade in vitro might trigger the differentiation and proliferation of life-cycle stages of T. brucei that are currently refractory to culture.